This book examines the issues across the breadth of elasticity theory. Firstly, the underpinning mathematics of vectors and matrices is covered. Thereafter, the equivalence between the inidicial, symbolic and matrix notations used for tensors is illustrated in the preparation for specific types of material behaviour to be expressed, usually as a response function from which a constitutive stress-strain relation follow.
Mechanics of Elastic Solids shows that the elastic response of solid materials has many forms. Metals and their alloys confirm dutifully to Hooke's law. Non-metals do not when the law connecting stress to strain is expressed in polynomial, exponential and various empirical, material specific forms. Hyper- and hypo- elasticity theories differ in that the former is restricted to its thermodynamic basis while the latter pervades many an observed response with its release from thermal restriction, but only at the risk of contravening the laws of thermodynamics.
This unique compendium is suitable for a degree or diploma course in engineering and applied mathematics, as well as postgraduate and professional researchers.