Summarizes the major results about topological geometries on surfaces. The authors cover much of what is known plus problems that remain to be solved. With connections to a host of other areas, this book will appeal to all whose research uses, or touches on, point-line geometry.
The projective, Möbius, Laguerre, and Minkowski planes over the real numbers are just a few examples of a host of fundamental classical topological geometries on surfaces. This book summarizes all known major results and open problems related to these classical point-line geometries and their close (nonclassical) relatives. Topics covered include: classical geometries; methods for constructing nonclassical geometries; classifications and characterizations of geometries. This work is related to many other fields including interpolation theory, convexity, the theory of pseudoline arrangements, topology, the theory of Lie groups, and many more. The authors detail these connections, some of which are well-known, but many much less so. Acting both as a reference for experts and as an accessible introduction for graduate students, this book will interest anyone wishing to know more about point-line geometries and the way they interact.